

Efficient Syntheses of Functionalized Piperidines Through Extremely Regioselective Rh-Catalyzed Cyclohydrocarbonylation of Amido-ω,ω'-dienes

Iwao Ojima*, Donna M. Iula, and Maria Tzamarioudaki

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400

Received 19 March 1998; revised 14 April 1998; accepted 17 April 1998

Abstract: The highly regioselective cyclohydrocarbonylation of 4-amido-1,6-heptadienes catalyzed by Rh-BIPHEPHOS complex gives functionalized piperidines quantitatively, which serve as versatile intermediates for the syntheses of a variety of piperidine and quinolizidine alkaloids. Reaction of 3-Boc-amino-1,5-hexadiene affords the corresponding dehydropiperidine-aldehyde exclusively via site and regioselective hydroformylation. Possible mechanisms for these reactions are proposed. © 1998 Elsevier Science Ltd. All rights reserved.

Functionalized piperidine alkaloids have attracted considerable interest because of their diverse biological activities. We have been applying carbonylation reactions in the key steps for the syntheses of piperidine and izidine alkaloids. Now, we report here the syntheses of functionalized piperidines through the extremely regionselective cyclohydrocarbonylation of amido- ω , ω '-dienes and their applications toward the construction of quinolizidine and indolizidine alkaloids.

The cyclohydrocarbonylation of 4-amido-1,6-heptadiene 1 catalyzed by Rh(acac)(CO)₂-BIPHEPHOS³ at 65 °C and 4 atm of CO and H₂ (1:1) in THF gave 2-hydroxyl-6-(3-formylpropyl)piperidine 2 and/or 6-(3-formylpropyl)-5,6-didehydropiperidine 4 (eq. 1). On the other hand, the reaction in ethanol under the same conditions afforded 2-ethoxyl-6-(3-formylpropyl)piperidine 3 (PG = Ts, R = Et) exclusively (eq. 1). As Table 1 shows, when the reaction was run at 65 °C for 2 h (entry 1), hemiamidal 2 was formed exclusively. Hemiamidal 2 is converted to dehydropiperidine 4 with prolonged reaction time under the reaction conditions. Thus, a mixture of 2 and 4 was obtained at 7 h period (entry 2), and 4 became the sole product after 18 h (entry 3). Hemiamidal 2 can also be converted to 4 just by passing through a silica gel column. Typical N-protecting groups (PG), e.g., tosyl (Ts), carbobenzoxy (Cbz), and *tert*-butoxycarbonyl (Boc) groups, can be used in this reaction without appreciable difference in the yields. It should be noted that the reaction of 1a in methanol gave 1-tosyl-2-methoxy-6-(3,3-dimethoxybutyl)piperidine (5) in quantitative yield, i.e., the aldehyde moiety of the initially formed cyclohydrocarbonylation product (3: PG = Ts, R = Me) was converted to the corresponding dimethylacetal under the reaction conditions.

$$\begin{array}{c} & \begin{array}{c} \text{Rh(acac)(CO)}_2\\ \text{BIPHEPHOS} \end{array} \end{array} \\ \begin{array}{c} \text{RO} \\ \hline \\ \text{CO/H}_2 \text{ (1:1, 4 atm)} \end{array} \end{array} \begin{array}{c} \text{RO} \\ \text{PG} \end{array} \begin{array}{c} \text{And/or} \\ \text{PG} \end{array} \begin{array}{c} \text{MeO} \\ \text{N} \end{array} \end{array} \begin{array}{c} \text{MeO} \\ \text{Ts} \end{array}$$

0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)00848-X It has been shown that 1-alkoxy-6-(substituted)piperidines such as 3 and 5 serve as key intermediates for the diastereoselective syntheses of a variety of biologically active piperidine and indolizidine alkaloids.⁴ Accordingly, the present cyclohydrocarbonylation of amido-ω,ω'-dienes 1 provides highly efficient and convenient routes to these versatile key intermediates for alkaloid syntheses.

Entry	amidodiene	PG	Solvent	Time (h)	Product	Yield(%)b)
1	1a	Ts	THF		2a	100
2	1a	Ts	THF	7	2a + 4a (7:3)	100
3	1a	Ts	THF	18	4a `	100 (88)
4	1 b	Cbz	THF	18	4 b	100 (65)
5	1 c	Boc	THF	18	4 c	100 (71)
6	1a	Ts	EtOH	18	3a	100
7	1 c	Boc	EtOH	18	3 c	100 (93)
8	1a	Ts	MeOH	15	5	100 (73)

Table 1. Cyclohydrocarbonylation of Protected 4-amido-1,6-heptadienes 1.a)

Proposed reaction pathways for the formation of 3 and 4 are shown in Scheme 1. Extremely linear-selective hydroformylation of one of the two olefin moieties of 1 gives 6, which undergoes cyclization forming alkenyl-hemiamidal 7, and subsenquent regioselective hydroformylation of the remaining olefin moiety of 7 affords hemiamidal-aldehyde 2 (Path A). Alternatively, another regioselective hydroformylation of 6 gives dialdehyde 8, and the subsequent cyclization yields 2 (Path B).

Scheme 1. Proposed reaction pathways.

Elimination of hydroxyl anion from 2 generates reactive acyliminium intermediate 9. Addition of ethanol to 9 gives 3, while deprotonation, i.e., net elimination of water from 2, affords 4. Intermediate 2 was indeed isolated as mentioned above, and thus the intermediary of 2 has been confirmed. In order to determine which pathway is operative under the reaction conditions, the reaction was carried out at 45 °C for 3.5 h otherwise under

^{a)}All reactions were run with 1 (0.22 mmol), Rh(acac)(CO)₂ (0.002 mmol), and BIPHEPHOS (0.004 mmol) in 1.5 mL solvent at 65 °C and 4 atm of CO and H₂ (1:1). Conversion was 100% in all cases based on ¹H NMR analysis. ^{b)} NMR yields. The values in parentheses are isolated yields after chromatography on silica gel.

the standard conditions (see footnote a) of Table 1). This reaction gave a mixture of **7a** and **2a** (**7a/2a** = 2:3) in quantitative yield at 70% conversion (eq. 2). This result clearly supports Path A in that the cyclization of **6** giving **7** is faster than the second hydroformylation.

The influence of an alkyl substituent at the C-4 position of 4-amido-1,6-heptadienes was next investigated. The reaction of 4-methyl-4-tosylamino-1,6-heptadiene (10) catalyzed by the Rh-BIPHEPHOS complex at 40 °C gave hemiamidal-aldehyde 11 in nearly quantitative yield, which dehydrated upon passing through a silica gel column to afford dehydropiperidine 12 quantitatively (Scheme 2). Thus, the C-4 methyl does not affect the course of the reaction. However, when (R,S)-BINAPHOS⁵ was used as the ligand, the reaction of 10 gave non-cyclized dialdehyde 13 as the predominant product (>95% yield) with small amounts of branched dialdehydes, i.e., no cyclization took place (Scheme 2). It should be noted that the nature of the ligand used exerts marked effects on the course of the reaction.⁶ The reaction of 4-ethyl-4-tosylamino-1,6-heptadiene (14) catalyzed by the Rh-BIPHEPHOS complex at 65 °C for 18 h gave a mixture of dehydropiperidine-aldehyde 15 and dialdehyde 16 (15:16 = 1:3) in quantitative yield (eq. 3). Prolonged reaction time led to the increase in the amount of 15. These results suggest that the C-4 substitution does influence the course of the reaction, favoring Path B.

The reaction of unsymmetrical amidodiene 17 catalyzed by the Rh-BIPHEPHOS complex under the standard conditions gave dehydropiperidine-aldehyde 18 as the sole product, i.e., no pyrroline was formed (eq. 4). Thus, this reaction is extremely site and regio-selective in that the hydroformylation takes place at the homoallylic olefin moiety exclusively, only yielding the linear aldehyde intermediate 19.

A preliminary feasibility study on the applications of functionalized piperidines 3 and 4, thus obtained, to alkaloid syntheses has been successfully carried out. Two examples are shown below: (i) the diastereoselective alkylation of hemiamidal 20 derived from 3c, giving 21 (eq. 5) and (ii) the construction of the basic framework of quinolizidine alkaloids 23 from 4b (eq. 6).

(i) NaBH₄, EtOH, quant.; (ii) TBS-CI, imidazole, THF, 90%; (iii) n-BuCu•BF₃, 83%.

i) NaBH₄, MeOH, 90%; ii) MsCl, DMAP, py, CH₂Cl₂, 80%; iii) H₂, Pd/C, EtOH, 60%.

Further investigations on the applications of this work as well as the development of asymmetric cyclohydrocarbonylations of amido- ω , ω '-dienes are actively underway.

Acknowledgments: This work was supported by grants from the National Institutes of Health (NIGMS) and the National Science Foundation. Generous support from Mitsubishi Chemical Corporation is gratefully acknowledged. The authors acknowledge the university NMR facility at Stony Brook which was supported by a grant from National Science Foundation (CHE 9413510).

REFERENCES AND NOTES:

- [1] (a) Fodor, G. B.; Colasanti, B. In Alkaloids: Chemical and Biological Perspectives; S. W. Pelletier, Ed.; John Wiley and Sons: New York, 1985; Vol. 3; pp 1. (b) Strunzand, G. M.; Findlay, J. A. In The Alkaloids; A. Brossi, Ed.; Academic Press: New York, 1986; Vol. 26; pp 89. (c) Numata, A.; Ibuka, T. In The Alkaloids; A. Brossi, Ed.; Academic Press: New York, 1987; Vol. 31; pp 193. (d) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In The Alkaloids; G. Cordell, Ed.; Academic Press: San Diego, 1993; Vol. 43; pp 185.
- [2] (a) Ojima, I.; Donovan, R. J.; Eguchi, M.; Shay, W. R.; Ingallina, P.; Korda, A.; Zeng, Q. Tetrahedron 1993, 49, 5431. (b)
 Ojima, I.; Tzamarioudaki, M.; Eguchi, M. J. Org. Chem. 1995, 60, 7078. (c) Ojima, I.; Machnik, D.; Donovan, R. J.;
 Mneimne, O. Inorg. Chimica Acta 1996, 251, 299. For a related work, see (d) Cuny, G. D.; Buchwald, S. L. Synlett 1995, 519
- [3] (a) Billig, E.; Abatjoglou, A. G.; Bryant, D. R. U.S. Patents 1988, 4,769,498. (b) Cuny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 2066.
- [4] (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172. (b) Shono, T.; Matsumura, Y.; Tsubata, K.;
 Uchida, K. J. Org. Chem. 1986, 51, 2590. (c) Ludwig, C.; Wistrand, L.-G. Acta Chem. Scand. 1994, 48, 367. (d) Takahata, H.; Bandoh, H.; Momose, T. Tetrahedron 1993, 49, 11205.
- [5] Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H., J. Am. Chem. Soc. 1993, 115, 7033.
- [6] The reaction of 1a catalyzed by Rh-BINAPHOS complex at 60 °C and 4 atm of CO and H₂ (1:1) for 24 h gave a mixture of 2a and 4a (2a:4a = 3:7) in quantitative yield. Thus, BINAPHOS behaved in the same manner as BIPHEPHOS for 1a.